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ABSTRACT

A near-wall two-equation turbulence model of the K -E type is developed for the descrip-

tion of high-speed compressible flows. The Favre-averaged equations of motion are solved in

conjunction with modeled transport equations for the turbulent kinetic energy and solenoidal

dissipation wherein a variable density extension of the asymptotically consistent near-wall

model of So and co-workers is supplemented with new dilatational models. The resulting

compressible two-equation model is tested in the supersonic flat plate boundary layer - with

an adiabatic wall and with wall cooling - for Mach numbers as large as 10. Direct compar-

isons of the predictions of the new model with raw experimental data and with results from

the K - w model indicate that it performs well for a wide range of Mach numbers. The

surprising finding is that the Morkovin hypothesis, where turbulent dilatational terms are

neglected, works well at high Mach numbers provided that the near wall model is asymptoti-

cally consistent. Instances where the model predictions deviate from the experiments appear

to be attributable to the assumption of constant turbulent Prandtl number - a deficiency

that will be addressed in a future paper.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NASI-18605 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



1. INTRODUCTION

The direct numerical simulation of compressible turbulent flows - at high Reynolds num-

bers with all scales resolved - will not be possible for the foreseeable future, if ever at all.

Turbulence modeling will continue to play a crucial role in the computation of high-speed

aerodynamic flows associated with the design of advanced aircraft. In these applications,

near-wall turbulence modeling is extremely important for the accurate prediction of wall

transport properties, such as the skin friction and heat transfer coefficients, which are pivotal

for design. Despite its technological importance, progress in near-wall turbulence modeling

has been slow. Many of tile commonly used near-wall models - which typically contain a

variety of ad hoc wall damping functions - are not asymptotically consistent and yield poor

predictions even in simple incompressible boundary layers (see Patel, Rodi and Scheuerer',

Myong and Kasagi2 and Speziale, Abid and Anderson3 ). These deficiencies can be fatal

when turbulence models are applied to separated flows, or other complex boundary layers,

that require the governing equations to be integrated directly to the wall.

High-speed compressible flows present a whole range of new problems to near-wall turbu-

lence modeling. Shock/boundary layer interactions with turbulence amplification and flow

separation represent but two examples. Two-dimensional equilibrium turbulent boundary

layers for supersonic flows are less of a problem provided that the external Mach number Al"

is not too large. For these flows it is generally believed that Morkovin's hypothesis' - com-

mnonly interpreted to mean that the turbulence statistics are only altered by compressibility

effects through changes in the mean density - is valid for at least the range 0 < Af , _ 5.

This hypothesis allows for the use of variable density extensions of existing incompressible

turbulence models for which dilatational effects are neglected. However, even the ability of

these models to reliably predict mean velocity profiles in two-dimensional equilibrium bound-

ary layers for Mach num)ers .11, > 5 has been recently called into question (see Bradshaw,

Launder and Luniley 5 and luang, Bradshaw and ('oakley6 ). Of course, for non-equilibrium

compressible flows involving shocks -- or extremely high Mach numbers in or near the hyper-

sonic flow regime issues related to near wall turbulence modeling are even more unsettled

(c.f. Bushnel 1).

In this pa)er. a new near-wall two-equation turbulence model of the K - type is

developed for high-speed compressiblc flows. Two features distinguish this model from earlier

work: (a) a variable density extension of the asymnptotically consistent near-wall model of

So et al. ' for incompressible flows is used. and (b) high-hReynolds numnber models for tl lie

dilatational ternis arei inpleiented as developed recent ly by Sa rkar eo ,. 1(1 and ('olemnan

and Mansour t based on an analysis of lioiogeeons t url)ulence. I'lie resulting coimi )r,,ssitble

model is tested in supersonic flat plate boindary Iayers at zro, f)r( issure gradieint both

.'or~
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with an adiabatic wall and with wall cooling - for external Mach numbers in the range
0 < Moo < 10. Comparisons are made with experimental data, and with the predictions of
the K - w model of Wilcox", in an attempt to address the following questions:

(a) Can incompressible two-equation models be extended to supersonic boundary layers

with a minimum of compressible corrections that are systematically determined?

(b) Will these models perform well at high Mach numbers?

(c) Where will the models break down, and what deficiencies give rise to it?

These issues will be addressed in detail in the sections to follow and recommendations
will be made for future research.

2. THE TWO-EQUATION TURBULENCE MODEL

We consider the supersonic turbulent flow of an ideal gas with bulk viscosity and body
forces neglected. The equations of motion are given by:

Mass
a--+ (pui) = 0 (1)

Mornenturn & 2
- (pa2 ) + (puiu,), 3 = --p,, - 2 (/Iu 1 ,3 ),, + [ji(ui,3 ± uji~ (2)at3

Energy
-(pCpT) + (puCpT),, = - + uip,j + aoijuj + (kT, ),j (3)

where

p = pRT (4)

ai 2 1 k ,j + 11(1ij + uj,i) (5)

3
are, respectively, the thermodynamic pressure and viscous stress tensor given that p is the

density, ui is the velocity, T is the temperature, R is the ideal gas constant, pi is the dynamic

viscosity, k is the thermal conductivity, and ( is the specific heat at constant pressure. hlere,

the Einstein suniationi convention applies to repeated indices and (.),, denotes a gradient

with respect to the spatial coordinate x,.
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Any flow variable " can be decomposed into mean and fluctuating parts in two ways:

=Y + = F" + (6)

where Y represents the traditional ensemble average whereas Y represents a Favre average

defined by

(7)

The mean equations of motion for compressible turbulence take the form:

-+ (-u3,' = 0 (8)
0 u 2

a-i(V) + (Ti),, = - - ( 'j,, + [j(f(, + aj,0)], - (pr i),j (9)

a+ = +-7 + fipi + + ui+

at at + U(10)

+-hui2j + - (pCQi),i + (kTi),i

where
" (11)

7ij = ui u1 11

i= TI (12)

"7ij 2 Af-k,kbij -±(lij + fij,i ) (13)
3

Pe = 0jUij  (14)

are, respectively, the Reynolds stress tensor, the Reynolds heat flux, the mean viscous stress

tensor, and the turbulent dissipation rate. Eqs. (8) - (10) are derived subject to one major

assumption: turbuient fluctuations in the viscosity, thermal conductivity and specific heat

can be neglected.

The pressure gradient-velocity correlation up, can be written in the equivalent form (see

Speziale and Sarkar1 3 )

uipi= -(RTu'), (PRu, T ),, - p'u,i (15)

Consequently, in order to achieve closure, models are needed for: (a) the Reynolds stress rij,

(b) the Reynolds heat flux Qi, (c) the turbulent dissipation rate c, (d) the pressure dilatation

correlation plu',i and (e) the mass flux u7t. Consistent with the recent work of Sarkar et al.,

the dissipation is decomposed into solenoidal and compressible parts:

= + ± (16)
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where for homogeneous turbulence 5e' = .w' and pE, = 5i(u i)2 given that w' is the

fluctuating vorticity. Here, I, represents the dissipation associated with the energy cascade.

The length and time scales will be built up from F, which is to be obtained from a modeled

transport equation. The Sarkar et al.9 model for the compressible dissipation will be used

in the form:

t ES (17)

where Mt = (u'ut'/yRT) is the turbulence Mach number given that -y Cp/Cv is the

ratio of specific heats. Here, the constant a is approximately 0.5 based on direct numerical

simulations of homogeneous shear flow1 .

The Reynolds stress tensor is modeled in the standard eddy viscosity form

ij =-2Kbij - 2Cf K-(Sij - ISkk6ij) (18)

where K =r is the turbulent kinetic energy, =/ij (0i 4/0xr + Oii 1/Ox,) is the Favre-

averaged rate of strain tensor, C. is a dimensionless constant taken to be 0.096, and fl, is

a wall damping function. The wall damping function f, - which goes to one sufficiently

far from the wall - will be discussed in more detail later. A simple eddy viscosity model

was chosen since we are dealing with two-dimensional attached boundary Liyers; for other

applications involving more complex flows, (18) can be easily generalized to an algebraic

stress model or an anisotropic eddy viscosity model (see Rodi' 4 and Speziale 5 ).

The Reynolds heat flux and mass flux terms are modeled by the standard gradient trans-

port hypotheses:
,_1-- C f , K 2

ui  = C -T i (19)
PrT 6,

Cjf, K 2

U =- (20)
po'p Es

where PrT is the turbulent Prandtl number which is taken to be 0.9 and Oa is the mass flux

constant which assumes a value of 0.5. A recently derived model by Sarkar" is used for the

pressure dilatation correlation which is given by

''= -- IapM2 + a2- 3 M} (21)

where P = -r, ii is the turbulence production. Based on direct numerical simulations of

homogeneOus shear flow, Sarkar" determined that oi - 0.4 and o2 - 0.2.

In order to achieve closure, modeled transport equations for the turbulent kinetic energy

K and the solenoidal part of t lie turbulent dissipat ion rate E, are needed. The exact transport



equation for the turbulent kinetic energy is given by' 3

a 7- - T

)+ (Pii'K),' = i- + pu. - 7 + ,--'-, + D~. + (22)

where
DT= Al ' '

u - = U a (23)

are, respectively, the turbulent and molecular diffusion terms. If turbulent fluctuations in

the viscosity are neglected, as well as other higher-order terms, the molecular diffusion can

be approximated as
E)M = -jK, i (24)

in the boundary layer. Formally, (24) is the leading order part of (23) close to the wall

provided that turbulent fluctuations in the viscosity and density can be neglected. The

standard gradient transport hypothesis is applied to the modeling of the turbulent diffusion

term:
E)T Tr K (25)

OrK

where again PT = "5CfuK /&, is the eddy viscosity and OK is a constant taken to be 0.75.

This leads to the final modeled transport equation for K:

- (5K) + (75fijK),j -5,jfj - ;5(l + aMt2)s,, - a,T5PMt?at

+- 2pE8 MW - u ' + ui + LK) K, (6

The exact transport equation for the solenoidal part of the turbulent dissipation rate is

of the general form:
a~g, 4 1 DF

a(75ii e), 4 - E ifi, + -E I Dt + P ," - (D" + DT, + (it).i (27)

where P,, is the production of solenoidal dissipation, ),, is the corresponding destruction

term, and D,, is the turbulent diffusion of solenoidal dissipation. For the sake of brevity, the

details of the higher-order correlations that comprise P ,,,I %, and D, are not given (these

correlations are quite complicated). In deriving the viscous term in (27), turbulent fluctua-

tions in the molecular viscosity have been neglected consistent with the earlier derivations.

The term P, in (27) represents the production of solenoidal dissipation by deviatoric mean

strains as well as by density fluctuations. This term will be modeled as a variable density

extension of its incompressible form with density fluctuations neglected"3 . Hence, we take

Pr,= -Cip-I Tro ( f,'j - Uflk.kbi) (2S)
K 3
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where Cj1 is a dimensionless constant taken to be 1.5. The same approach is used in the

modeling of the destruction term which yields

, = Q!2f2pA E,2(29)

where f2 is a wall damping function and C0 2 is a dimensionless constant which is taken to

be 1.83. The standard gradient transport hypothesis is used for the turbulent diffusion term

v ( iuT)(30)

where a, is a dimensionless constant which is taken to be 1.45.

Modeling the variable viscosity term in (27) is a bit trickier. For the high Mach number

flows to be considered in this paper, variations of the viscosity with temperature must be

accounted for. In this vain, we use Sutherland's law16 for which

(T) (1+1 (31)TO + /

where T0 and 170 are the reference temperature and viscosity whereas x is a constant that

depends on the gas (for air, ) = II0°K). Eq. (31) could also be used for the viscosity trans-

port term (l1F)D-Y/D in (27). However, this would couple the dissipation rate transport

equation to the continuity and energy equations at the highest time derivative - an undesir-

able feature that can cause numerical stiffness. Hence, following the work of Coleman and

Mansour 11, we will use the power law approximation

= 70 , (32)

O)

(where n 0.7) for thc formulation of the viscosity transport term (1/F)D-/Dt in (27);

Sutherland's law will, however, be used for the calculation of the viscous diffusion teims since

it is more accurate. Coleman and Mansour l showed that, for an isentropic compression,

(32) yields the relation
1 D-F1 Dt - [1 - n( -33)

where = Cp/C, is the ratio of specific heats. On physical grounds one would expect (33)

to constitute the leading order part of (1/F)D-/Dt and it will be used to avoid numerical

stiffness problems. The final form of the modeled dissipation rate equation is obtained by
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substituting (28) - (33) into (27) which yields

a(TE") + I1i~8 , + n('y - 1) eu..i' - ( T iii,,

fkkii -02fhP-± + + TEi(4

where n ; 0.7. The mean viscosity F- is approximated by Sutherland's law in (34) as well as

in the other transport equations.

3. NEAR WALL MODIFICATIONS FOR COMPRESSIBLE FLOWS

Now we will address the issue of near-wall modeling in more detail. Two fundamental

assumptions will be made: (i) the functions are analytic so that they can be expanded in a

Taylor series near the wall, and (ii) turbulent fluctuations of the density and temperature

vanish at the wall. While the former assimption is well accepted, the latter one - despite

its widespread use - is somewhat debatable. However, since this assumption is rigorously

valid for isothermal wall conditions - and a good approximation for the adiabatic wall - we

are justified in using this simplification for the present paper. Without this assumption, the

near wall asymptotics become much more uncertain.

A Taylor expansion then yields:

P' = 31Y + 02Y' +*"' (35)

T" = _y + _t2y
2 +. (36)

where /3, and ji are functions of x. z and t given that y is the coordinate normal to the

wall. Due to (35) and the continuity equation (1), it follows that the fluctuating velocity

components (u, V, w) have the expansions

u = aly + a 2y
2 +."" (37)

v = b2y 2 + b3 y3 + (38)

w = e1y + c2y 2 + (39)

near the wall based on either standard or Favre averages. Equations (37) - (39) are identical

to their incompressible counterparts - a simplification that arises from the assumption of

vanishing density fluctuations at the wall. 13y using (37) - (39). it is straightforward to show

that we have the following near-wall asymptotics for the crucial turbulence correlations:

K =O(2), , 0(1). (y2) (10)



1ST = O(Y3 ), p'U .i = O(y2 ) (41)

= O(y 2 ), (u i'),, = O(y 2 ) (42)

P, = O(y), D, = 0(1) (43)

(the precise asymptotic behavior of the turbulent diffusion terms (25) and (30) are not

of consequence since they constitute higher-order terms near the wall). The asymptotic
constraints (40) - (43) can be satisfied identically with only two damping functions, f", and

f2, which behave as
f" = O(y- 1 ), f2 = O(Y2) (44)

near the wall.

Consistent with the underlying assumption that the density fluctuations vanish at the

wall - which renders the fluctuating velocity to be solenoidal to the leading order near the

wall - a variable density extension of the incompressible wall damping functions of So et

al.' will be used. Validations of these wall damping functions have been carried out for a

number of two-dimensional flows, including internal and external flows as well as flows with
heat transfer" - ". In all of these cases, good correlations with direct simulation data 20 - 24

and measurements2 ' have been obtained. These wall damping functions are implemented in

the form:
(I+3.41 ) tanh(y+/115) (45)

f = [ + f-2

J2-,l+ C2 2 C 2 \ e sZ ) j
where

Y + = YU,/F (47)

fw2 e(R,/64)2 , Rt = Ii2/Te, (48)

e; = - 2-AK/y' (49)

= - 2T( vk),j(v'7K),, (50)

In (47) - (50), 1 =T/p5 is the local mean kinematic viscosity and u, is the friction velocity

defined by

= ,(51)
where 7, is the wall shear stress26.

8



4. THE FLAT-PLATE BOUNDARY LAYER EQUATIONS

The steady boundary layer form of the mean turbulence equations corresponding to

this model are now provided. Consistent with most practical computations of compressible

flows 27 , we will solve the energy equation in its total enthalpy form where

H = CpT + -iftiu + K (52)

2

is the Favre-averaged total enthalpy. The resulting boundary layer equations at zero pressure

gradient take the form:
a

+x ++(pv) =0(53)

P +x + v- - (IT + ILT)-y (54)
a ay ay

O OK D-r 2  /a 2
-- OK at 2Tjj2 a)211

ax +[ y=P (a - --. +'U o  PrT Es -- f- 0lI (ay (55

M2 +7 (1 Oa) + a T +2)al
+02T, t _ -(56)

pTU5 + PV-- I + n(--l)] T (-- +- G1, - ' A T I-
Ox Dy 3 a\ x ay K \ay)

62 a [ 1T T) at,(57
-CE 2 f 2 _ + (57)

where AT = -5C, f,,K /e6 is the trtbulent viscosity. A summary of the values of the constants

is given as follows: C,, = 0.09P, Ci = 1.5, G 2 = 1.83, OK = 0.75, cr, = 1.45, o, = 0.5, a =

0.5, al = 0.4, 02 = 0.2, ?,d n = 0.7. The damping functions are as specified in (45) - (46);

consequently, the two equation model of So et al.' is recovered in the incomprcssible limit.

The turbulent Prandtl number PrT is specified as 0.9; the molecular Prandtl number Pr is

taken to be 0.74 for air and 0.70 for helium; and the specific heat ratio is 1.4 for air and

1.67 for helium. Sutherland's law (31) is used to evaluate the molecular viscosity in (54) -

(57) for air; for helium the power law quoted in Fernholz and Finley 28 is used.
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A few comments are in order concerning the derivation of the transport equation for the

total enthalpy ft. We obtain this equation by adding the modeled transport equations for

T, fi~i and K. As an alternative approach, the exact transport equation for I1 can be

modeled directly. However, we do not feel that this is a good approach since iI is riot a

Galilean invariant quantity.

Equations (53) - (57) are solved subject to tle standard boundary conditions:

,i = 0, b, = 0, K = 0, (- = 2T.(0 VK,/Dy) 2  (58)

at the wall. rwo different types of thermal wall boundary conditions will be considered: the

adiabatic wall xkhere M10/Dy is zero and the cooled wall case where !I is constant. At the

edge of the boundary layer, the mean velocity and the total enthalpy are required to match

the specified free-stream conditions. On the other hand, the turbulence quantities, A and

5 , are assumed to be zero in the free stream. Thus formulated, the above equations with the

appropriate boundary conditions can be solved numerically using the boundary-layer code

developed by Anderson and Lewis 27 and modified by So et al.'

5. DISCUSSION OF RESULTS

Two versions of the K - model derived herein are used to carry out the compressible flat

plate boindary-layer calculations to be presented in this section. One version consists of the

full compressible model as given in Eqs. (53) - (57) and is designated as K -,: model/i. The

secoiid version which is designated as A - model/2 - is a variable densit y extension of the
iciipressibhe two-eqat ion model of Heference 8 wherein the explicit compressible terms in

(56) and (57) are neglected along with the dK/Dy tern in (55). Furthermore, comparisons

will also be made with results of the well-known IN - ,' model of Wilcox1 2 . The calculations

of these two different versions of the new K - .f model, as well as those for the K - ,

model, will allow us to evaluate the range of validity of Morkovin's hypothesis and assess

thei ii portarice of having an asymptotically consistent near-wall correction for turbulence

models. lherefore, the central questions posed in the Introduction can be addressed by

comparing these results with well-documented experimental data spanning a wide range of

free-stream Mlach numbers arid cooled wall conditions.

Ihie three ditferent models mentioned above are used to calculate compressible flat plate

boundary layers on adiahatic as well as cooled walls and the results are compared with

measurements drawn from H efererices 28 and 29. Tlie calculations are carried out over the

Mach niube'r rarige 0 < 11, < 10 for the adiabatic wall boundary condition and over the

temperature ramge. 0 < 1',:7.1,,, < I for tihe cooled wall case. lHere, 1,A is the free-stream

Mach iamher, I, is the free-stream tenperatutre and i ,, is the adiabatic wall temperature.
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Since only mean flow proptrties are available from Reference 28, comparisons are made with
these measured quantities only and the reported skin friction coefficient, Cf = 2-r/- U.2

(where Uoo is the free-stream velocity and T. is the free-stream mean density). In addition,
comparisons of the calculated turbulence quantities are made with the results of the K - w

model. All calculations are carried out to the same momentum thickness Reynolds number
(Re) as the measurements and the comparisons are made at these respective locations. Four
sets of data are chosen from Reference 28. These are cases 55010504, 53011302, and 73050504
with the adiabatic wall boundary condition and case 59020105 with a constant cooled wall

temperature. M, for these cases are 2.244, 4.544, 10.31, and 5.29, respectively, and the
corresponding values of Re are: 20,797; 5,532; 15,074; and 3,939. The variations of Cf with
Mo, and To/Taw are compared with the van Driest II results given in Reference 29. Finally,

the mean velocity profiles afe compared with the van Driest law-of-the-wall for compressible
boundary layers30 '1 and an assessment of the effects of compressibility on boundary-layer

flows is attempted.

The mean velocities are presented in two different forms: one in terms of wall variables,
U+ versus In y+, and another in terms of outer variables, ii/Uoo versus y/6 . Here, u+ =

fl/u, y+ = yu,/-F.. and 6 is the boundary-layer thickness. In this way, the effects of the
calculated u, and 5 on the mean velocities can be assessed. The mean temperature is
plotted in the form of T/T. versus y/b while all turbulence quantities, such as K and -U-W,

are normalized by u2 to give k+ and --u-+, respectively, for presentation. A comparison
with the van Driest law-of-the-wall3 ° '3' for compressible flows is also attempted; therefore,

the mean velocities of two cases are plotted in terms of the compressible u+ defined according
to Reference 31 as -= f (p/i) du+. Since the K budgets for all cases considered are
essentially similar, only the budget of K in the near-wall region for case 73050504 (A" =

10.31 and Tw/T, = 1.0) is presented. Here, the reference temperature T, is taken to be the
recovery temperature for the cases with an adiabatic wall boundary condition and taken to

be the adiabatic wall temperature for the cooled-wall case.

The u+ versus In y+ plots for the four cases are shown in Figures 1 and 2. In each figure,

the calculated and measured skin friction coefficient Cf, as well as that determined from the
van Driest II formula of Reference 29, are listed for comparison. A standard law-of-the-wall

given by u+ = (1/K)ln y+ + B is also shown for comparison, where the von Karman constant
K = 0.41 has been assumed. It is recognized that the intercept B should be a function of
AIf, however, in these figures, B is taken to be 4.7. The actual value used here is not too

important because the objective is to determine and compare the variation, if any, of the

log-law slope with MAl, and TW/T. The log-law is seen to hold true for all cases calculated
using both the K-e and K -w models (Figures 1 and 2) and the value of K thus determined

11



for the three adiabatic wall cases is essentially 0.41. For the cooled-wall case, the calculated

K is not equal to 0.41 and varies from model to model. The best agreement with data is

given by the calculation using K - e model/2 while the smallest value of K is predicted by

the K - w model. All models considered yield calculations of Cf that are in agreement with

measured data and with van Driest 11 values. The maximum error is less than 4% (Figures 1

and 2). An exception is the cooled-wall case where the measurement is higher than the van

Driest II value. According to Reference 28, the measured Cf in this case is not as accurate

as in the other cases and this explains the discrepancy between the calculated and measured

Cf shown in Figure 2. This comparison, therefore, shows that the additional compressible

terms in the governing equations do not significantly affect the calculated results so long

as the near-wall model used is the same and is asymptotically consistent. In other words,

Morkovin's hypothcsis is valid for flows with free-stream Mach numbers as high as 10 and

wall temperature ratios noticeably smaller than one.

In the past, velocity profiles in wall coordinates were invariably plotted in terms of u+

to illustrate the existence of the van Driest log-law and the constancy of K in compressible

boundary-layer flows6'30 '31 . Since then, the compressible law of the wall is typically taken

to be given by u+ rather than by u+ , and Kc is considered to be ab out 0.41 and constant

over the Mach number range of 0 < Al, < 5. The calculated and measured velocity plots

given in Figures 1 and 2 show support for the compressible law-of-the-wall when it is written

in terms of u + rather than u + . Furthermore, K is determined to be approximately 0.41

and is relatively constant over the Mach number range of 0 - 10 for the adiabatic wall

boundary condition. These results seem to conflict with the proposal of van Driest". In

order to resolve this seeming contradiction, the velocity plots of u + versus In y+ for cases

5501050t (M1 2.244, T,/,T, = 1) and 53011302 (M, = 4.544, T/T = 1) are shown in

Figure 3. In addition, the compressible law-of-the-wall as given in Reference 31 is shown for

comparison. It can be seen that a line that is parallel to the compressible law-of-the-wall

can be drawn through a few of the dat- points spanning over a narrow range of y+. On the

other hand, the calculated profiles are in agreement with data over a wider range of y+. The

slopes of the calculated profiles are roughly, parallel to that determined from measurements

and are slightly larger than the slope of the compressible law-of-the-wall shown. Therefore,

irrespective of how the velocity profiles are plotted', the calculations are in good agreement

with data. lowever, the slope of the log-law appears to be given by (0.4l) - l only when the

profiles are plotted in terms of u+ .

Based on the above comparisons, it seems that there is very little difference between

the predictions of the K - E and K - w models. This is particularly true in regard to the

calculations of C f. The semi-log plots shown in Figure 1 tend to mask the differences found

12



between the models in the calculations of the mean temperature and density profiles. These

differences begin to show up in the plots shown in Figure 3 and in the predictions of the

cooled-wall case (Figure 2). In order to determine the actual difference between the mean

flow predictions of the K-e and K-w models, plots of fi/U, versus y16 are given in Figures

4 and 5 for the adiabatic and cooled wall conditions, respectively, while the corresponding

mean temperature profiles are plotted in Figures 6 and 7. These results show that there

are substantial discrepancies between measurements and the profiles of £t/U, and T/T,,

calculated using the K - w model. The discrepancies increase as M" increases and as Tw/TT

decreases. The best results are given by K - E model/I. On the other hand, the predictions

of K - E model/2 are very close to those of K - e model/i and are substantially different

from those of the K - w model. This is further evidence that an asymptotically consistent

near-wall model is more importaat than the additional compressible terms as far as the

predictions of the mean flow properties are concerned.

The ability of the K - w model to predict the variations of Cf with A" and TWITW is

well established 2 . If the proposed K - E model is to be accepted, its ability to predict Cf

for different AI, and TwIT has to be demonstrated. In Figure 8, the variation of Cf/(Cf)i

with M, for the case of the adiabatic wall boundary condition is shown. Here, (Cf)i is the

skin friction coefficient for an incompressible flow evaluated at Ro = 10' which is determined

to be 2.70 x 10- 3 . This figure shows a comparison of the calculations of K - 6 model/i and

K - e model/2 with the van Driest II curve 9 . Essentially, there is no difference between the

predictions of K - e model/I and K - e model/2 and both results are in excellent agreement

with data. The predictions for the cooled wall case are shown in Figure 9. Calculations for

this case are carried out for M. = 5 and Ro = 10' where th- incompressible Cf is again

determined to be 2.70 x 10- 3. Three sets of calculations are presented. These are for K -

model/I, K-e model/2 and a third version of K-- model/1 where the OKa/Oy term in (56) is

neglected. It can be seen that an error of 5% or larger starts to accumulate at approximately

T/Ta, = 0.4 for K - e model/i. This trend is contrary to the results reported in Reference

12. An examination of the governing equations solved by other researchers revealed that,

besides the differences noted in the turbulence model equations, the mean enthalpy equation

solved by these researchers does not include the term OK/Dy on the right hand side of (55).

Indeed, when the OK/Dy term is neglected, an overall important improvement is obtained.

The predicted Cf at Tw/T, = 0.2 is increased by about 6%, thus giving a much better

agreement with the van Driest II curve29 . If the additional compressible terms in the K - e

equations are further neglected (K - E model/2), the calculated Cf is only improved by

about 2%. The remaining disagreement could be attributed to the assumption of a constant

turbulent Prandtl number which cannot properly account for a reduct ion of turbulent mixing
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resulting from a cooled wall (in fact, the OK/Oy term can be formally dropped if PrT = 0.74;

such a lowering of the turbulent Prandtl number would not be inconsistent with experiments

for the cooled wall case). However, this effect can be appropriately incorporated in a heat-

flux model and modifications can be formulated to describe its near-wall behavior19' 32 . In

other words, if highly cooled-wall flows are to be predicted correctly, turbulent heat fluxes

and their near-wall behavior need to be modeled.

The distributions of k+ and -u-v+ across the boundary layers are compared in Figures

10 - 13. In these figures, only the results of K - e model/1 and the K - w model are

compared. The results for the adiabatic wall boundary condition are shown in Figures 10

and 12 while those for the cooled-wall case are plotted in Figures 11 and 13. It can be seen

that the K - w model underpredicts k+ in the near-wall region and overestimates its value

in the outer part of the boundary layer. This incorrect prediction is common for all cases

studied. The predicted near-wall behavior is substantially different from that given by K- e

model/i. Instead of yielding a finite slope for k+ at the wall, a near zero slope is calculated.

Furthermore, the maximum k+ calculated is about half that given by K- E model/1. On the

other hand, the K -w model yields the correct near-wall behavior for -u-+ but overpredicts

its value in the outer part of the boundary layer. The overprediction extends across the range,

0.2 < y/ 6 < 1.0. It is now clear that the K-w model is formulated to give correct results for

the mean velocity and the wall shear stress; however, its predictions of other properties are

in doubt, particularly, in regard to the near-wall behavior. Reduction of turbulence activity

in the outer part of the boundary layer is clearly evident when either compressibility or wall

cooling effects are present. The reduction increases as Mc, increases and Tw/Tr decreases.

This is further substantiated by the very significant drop in the maximum value of k+ as M,,

increases. Therefore, it is expected that turbulence activity will be substantially reduced in

a flow where the free-stream Mach number is large and the wall is highly cooled.

The predictions of the near-wall flow can be further examined. With the assumption

of vanishing p' and T" at the wall, Taylor expansions of the fluctuating velocities, density

and temperature about y = 0 are given by (35) - (39). These expansions together with

the definition for E. can be rearranged to give the following dimensionless expansions for

k+, -u- and 5+, i.e.,

k+  ak(yt) + bk(y) 3 +..., (59)

-uv auvj(y') + b.,(y+)4 +..., (60)

+=2ak + 4bky + +..., (61)

where the a's and b's are time-averaged coefficients that are functions of x and z. From

these expansions, it can be easily deduced that k+ 1/e(yZ) 2  0.5 at the wall. Therefore, the
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asymptotic behavior of k/e (y+)2 is 0.5 and is independent of Al as well as the thermal
wall boundary conditions. The accuracy to which a model can predict this quantity is a

reflection of its asymptotic consistency. Finally, the variation of C+ at the wall with Mach
number can be deduced from a plot of ak versus Mf; therefore, this result is shown in

Figure 14 for the cases with the adiabatic wall boundary condition. The value of ak for the
corresponding incompressible flow is taken from Reference 8. Model calculations of ak, a,,,

and k+/(y+)2 are tabulated in Table 1 for comparison. Since the K - w model is not an

asymptotically consistent near-wall model, its predictions of these limiting values are poor;

therefore, they are not listed in Table 1. From these results, it can be seen that the present

K - e model is asymptotically consistent up to a Mach number Alo of 10 for both adiabatic

and cooled wall conditions. In other words, the predictions of k+ and -uv+ shown in Figures
10 - 13 are more likely to be correct compared to those given by the K - W model. These

results further show that ak is a function of the Mach number and decreases with increasing
M. (see Figure 14). This means that viscous dissipation at the wall also decreases with

increasing M,.

The near-wall budget of K for the M, = 10.31 case (73050504) is shown in Figure

15. It is evident that the budget, of K bears a strong resemblence to that calculated for
incompressible flows 7 . The additional compressible terms have a negligible effect on the

near-wall K budget. Therefore, the assumptions made to extend the near-wall damping

function f2 in the dissipation-rate equation to compressible flows appear to be justified.
Again, it can be seen that viscous diffusion balances dissipation at the wall. This balance

extends to about y+ = 4 where turbulent diffusion and production become important. In the

region, 4 < y+ < 15, viscous and turbulent diffusion as well as production and dissipation

are equally important. Beyond y+ = 15, production and dissipation are approximately in

balance, just as in the case of incompressible flows. Consequently, the near-wall behavior of K

is very similar for both incompressible and compressible flows (thus, explicit compressibility

effects are not that important in the near-wall region).

6. CONCLUSIONS

In contrast to the conclusions drawn by Bradshaw et al.5 and Huang et al. 6, the present

investigation shows that conventional K - e models can be extended to calculate equilib-

rium compressible boundary-layers, at high Mach numbers, if the near-wall modifications to

these models are asymptotically correct and internally consistent. When properly modified,

K - e type models can be used to calculate equilibrium compressible boundary-layers with

free-stream Mach numbers as high as 10 and wall temperature ratios as low as 0.2. Two

different versions of the K - e model proposed in this study are tested: one with all of
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the systematically derived dilatational terms included in the governing equations (K -
model/i) and another which is a variable density extension of the incompressible limit of

this model where explicit compressible terms are neglected (K - e model/2). Calculated

mean flow properties and wall shear stresses from these two versions of the K - E model are

in excellent agreement with measurements. The near-wall behavior of the calculated tur-
bulence properties is consistent with exact results and the correct limiting values for these
properties are recovered. Compressibility effeds are found to have a negative influence on
turbulent mixing which is reflected in a reduction of the maximum value of the turbulent

kinetic energy and the value of the viscous dissipation at the wall as the free-stream Mach

numbcr increases. Wall cooling also produces the same effects and the two versions of the

proposed K - e model mimic the trend very well. This means that Morkovin's hypothesis

is valid for the full range of Mach numbers and wall temperatures tested, provided that the
near-wall two-equation models used to close the governing equations are asymptotically cor-
rect and internally consistent in the near-wall region. On the other hand, the well accepted

K - w model provides good correlations with measurements for the mean velocity and wall
shear stress only. Its predictions of the temperature profiles are in considerable error, partic-

ularly for high free-stream Mach numbers and for the cooled-wall boundary condition. The
reason for these discrepancies is traced to the model's inability to reproduce the near-wall

turbulence properly; the modeled asymptotic behavior of the turbulence properties is not
consistent with the exact equations governing the transport of these quantities. Despite
these deficiencies, it is still rather surprising how well the K - W model predicts the mean

velocity and skin friction at high Mach numbers.

Considering the excellent results obtained in this paper for equilibrium turbulent bound-
ary layers, future applications of this compressible K - F model are planned for the study of
more complex non-equilibrium boundary-layer flows involving shocks. In these applications,
we would expect the explicit compressible terms appearing in the modeled transport equa-

tions for K and e, to play a morc important role. After these further tests are completed,
we will have a much better idea of the full range of applicability of this new compressible

K - e model for wall-bounded turbulent flows.
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Case XI. TW/TT Model a k a, x 10' k+/6+(yw)2

55010504 2.244 1.0 K - e model/1 0.0998 7.167 0.50

55010504 2.244 1.0 K - E model/2 0.0992 7.198 0.50

53011302 4.544 1.0 K - E model/1 0.0850 6.700 0.50

53011302 4.544 1.0 K - E model/2 0.0836 6.760 0.50

73050504 10.31 1.0 K - E model/1 0.0785 6.630 0.50

73050504 10.31 1.0 K - E model/2 0.0771 6.740 0.50

59020105 5.29 0.92 K - e model/1 0.0805 6.120 0.50

59020105 5.29 0.92 K - e model/2 0.0788 6.140 0.50

Table 1. Asymptotic near-wall behavior of the calculated turbulence properties.
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